Network Flow Notes

Joel Laity

April 11, 2018

Definition 1. A network is a directed graph where:

- Each edge e is assigned a positive real number $C_e > 0$, called its capacity.
- There is a non-empty set of vertices S, where each vertex in S is called a source.
- There is a non-empty set of vertices T called sinks.
- We require that S and T are disjoint.

Definition 2. Let G be a network. A flow f on G is an assignment of a real number f_e to each edge e in the network. We require that:

- For all edges $0 \le f_e \le C_e$.
- (Consevation of flow property) For all vertices v not a source or a sink

$$\sum_{e \text{ into } v} f_e = \sum_{e \text{ out of } v} f_e.$$

Definition 3. The size of a flow f, denoted |f| is defined by

$$|f| = \sum_{e \text{ out of some source}} f_e - \sum_{e \text{ into some source}} f_e$$

Lemma 1. Let f be a flow on a network G = (V, E) with sources S and sinks T. Then

$$|f| = \sum_{e \text{ into some sink}} f_e - \sum_{e \text{ out of some sink}} f_e$$

Proof. We observe that

$$0 = \sum_{e \in E} f_e - \sum_{e \in E} f_e$$
$$= \sum_{v \in V} \left(\sum_{e \text{ into } v} f_e - \sum_{e \text{ out of } v} f_e \right)$$

if v is neither a source nor a sink then $\sum_{e \text{ into } v} f_e - \sum_{e \text{ out of } v} f_e = 0$ by conservation of flow,

$$= \sum_{v \in S \cup T} \left(\sum_{e \text{ into } v} f_e - \sum_{e \text{ out of } v} f_e \right)$$

since S and T are disjoint we can split the sum

$$= \sum_{v \in S} \left(\sum_{e \text{ into } v} f_e - \sum_{e \text{ out of } v} f_e \right) + \sum_{v \in T} \left(\sum_{e \text{ into } v} f_e - \sum_{e \text{ out of } v} f_e \right)$$
$$= \sum_{v \in S} \sum_{e \text{ into } v} f_e - \sum_{v \in S} \sum_{e \text{ out of } v} f_e$$
$$+ \sum_{v \in T} \sum_{e \text{ into } v} f_e - \sum_{v \in T} \sum_{e \text{ out of } v} f_e$$
$$= \sum_{e \text{ into some source}} f_e - \sum_{e \text{ out of some source}} f_e$$
$$+ \sum_{e \text{ into some sink}} f_e - \sum_{e \text{ out of some sink}} f_e - \sum_{e \text{ out of some sink}} f_e$$
$$= -|f| + \sum_{e \text{ into some sink}} f_e - \sum_{e \text{ out of some sink}} f_e.$$

 So

$$|f| = \sum_{e \text{ into some sink}} f_e - \sum_{e \text{ out of some sink}} f_e$$

as required.

Definition 4. Let G be a network. Let f be a flow on G. The residual network G_f is a graph with the same vertex set as G with the following edges:

- For every edge e of G with $f_e < C_e$ there is an edge in G_f with same beginning and end vertex and with capacity $C_e f_e > 0$.
- For every edge e of G with f_e > 0 there is an edge e' in the opposite direction in G_f with capacity f_e.

Example 1. The image at the top is a graph with edges labeled f_e/C_e . The bottom image is the residual graph is the residual graph where each edge is labelled with its capacity.

Definition 5. Let f be a flow on a network G. Let g be a flow on the residual G_f . Then we define a flow f + g on G as follows:

- Let e be an edge in G with flow f_e .
- Let g_e be the flow along the corresponding edge in G_f .
- Let e' be the edge in G_f in the opposite direction to e. It has flow g'_e .
- Then $(f+g)_e = f_e + g_e g_{e'}$.

(The next theorem proves that f + g is indeed a flow).

Example 2. An example of the sum of two flows is given in this diagram:

Theorem 1. Let G be a network with flow f. Let G_f be its residual with flow g. Then:

- f + g is a flow on G
- |f + g| = |f| + |g|
- Fix f. Then for any flow f' on G there exists some g' such that f' = f + g'.

Proof. Conservation of flow of f and g imply conservation of flow of f + g. Also $f_e + g_e \leq f_e + (c_e - f_e) = C_e$ and $f_e - g_{e'} \geq f_e - f_e = 0$ thus $0 \leq f_e + g_e - g_{e'} \leq C_e$ so $(f + g)_e$ satisfies the conditions in the definition of flow for all edges e.

For any particular source s we have

$$\sum_{e \text{ out of } s} (f+g)_e - \sum_{e \text{ into } s} (f+g)_e = \sum_{e \text{ out of } s} (f_e + g_e - g_{e'}) - \sum_{e \text{ into } s} (f_e + g_e - g_{e'})$$
$$= \sum_{e \text{ out of } s} f_e - \sum_{e \text{ into } s} f_e + \sum_{e \text{ out of } s} (g_e - g_{e'}) - \sum_{e \text{ into } s} (g_e - g_{e'}).$$

(Note the sums are over edges in G not G_{f} .) If we take the first and last expression in the displayed equation and sum over all sources s we get |f + g| = |f| + |g|.

(Details omitted) For the last part we can define g' = f' - f for a natural definition of subtracting flows (flip the signs in the definition of the sum of two flows). This g' is the one we want.

Definition 6. Given a network G a cut C is a set of vertices in G so that the set of sources S is a subset of C and C is disjoint from the sinks of G. The size of a cut is given by

$$|\mathcal{C}| = \sum_{e \text{ out of } \mathcal{C}} C_e$$

Lemma 2. Fix a network. For any flow f and any cut C we have

$$|f| \le |\mathcal{C}|.$$

Proof. We have

$$|f| = \sum_{v \text{ source}} \left(\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e \right)$$

now we use conservation of flow to add terms to the sum

$$= \sum_{v \in \mathcal{C}} \left(\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e \right)$$

if both ends of an edge e are in C then these terms will cancel out of the sum

$$= \sum_{e \text{ out of } \mathcal{C}} f_e - \sum_{e \text{ into } \mathcal{C}} f_e$$
$$\leq \sum_{e \text{ out of } \mathcal{C}} f_e$$
$$\leq \sum_{e \text{ out of } \mathcal{C}} C_e$$
$$= |\mathcal{C}|.$$

Corollary 1. For any network

$$\max_{flows f} |f| \le \min_{cuts \mathcal{C}} |\mathcal{C}|.$$

We now strengthen this corollary and turn it into a theorem.

Theorem 2. For any network

$$\max_{flows f} |f| = \min_{cuts \mathcal{C}} |\mathcal{C}|.$$

Proof. If $\max_{\text{flows } f} |f| = 0$ then there is no path from any source to any sink. Let \mathcal{C} be the set of vertices reachable from S the set of all sources. There are no edges out of \mathcal{C} so $|\mathcal{C}| = 0$.